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TEXAS Physics Recap @!;\I!Tﬁé

* Incident particle: fast neutrons > 20 MeV
* Neutrons only interact inelastically @ these energies

— Produces 2ndary particles through “catastrophic”
collisions with chip nuclei

— These 2ndary particles can cause SEU’s via linear energy
transfer (LET)

- ... Also what we want to detect to coincide with SEU’s

* Conclusion: optimize detector for the 2ndary, ionizing
particles



Geant4 Simulation
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TEXA

et Geant4 Simulation QI!T(AAENST

1mm x 1mm parallel-plate capacitor (Cu and SiO2)
Bombarded with 100 MeV neutrons (not shown)
Most collisions occur with the metal

— Makes sense; copper’s nuclei is larger than SiO2
At the least: gamma rays and additional neutrons are produced.

— No LET = good! No SEU.

At the most: aforementioned + protons, heavy ions of
metal/Si/O, other heavy particles (alpha, deuterium, etc)

— Protons: > 1 MeV

— Heavy ions: < 1 MeV; < 1 um range

TODO: Tweak maxStepLength to be able to simulate a more
realistic-sized capacitor.



7, TEXAS ATLAS

Original Detector Structure X &diciem

* NMOS varactor + M1 shield (to observe gamma rays by
photoelectric/Compton scattering)

* 37 fF (~1 CDAC unit cap) - 270 fF

Goes to High-Z node
ground “p US”
“MINUS”

Metal 1

Contact

N+

STI STI

“Length-wise” x-section view
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TEXAS Detector Modifications? ATLAS

* Major drawback to varactor structure

* Perturbed charge scales with amount of energy transfer,
which scales with the “thickness” of the E-field region.

* LET in the thin oxide (~2.6 nm thick) will be very limited
compared to MOM cap (~microns thick).

* Try M1-poly MOM cap?



TEXAS ATLAS

Calculation Example

* Assume: 2ndary particle of one 1MeV proton (conservative
energy estimate) passes thru SiO2 in the E-field of a MOM
finger capacitor. How much perturbed charge?



TEXAS Calculation Example ATLAS

* Assume: 2ndary particle of one 1MeV proton (conservative
energy estimate) passes thru SiO2 in the E-field of a MOM
finger capacitor. How much perturbed charge?

Density: p = 2.32 [g-cm3

LET @ 1 MeV in 5i02: ~ 2 — 189 8[MeV-cm?g ™" |

P dx

33_E—44 03 [keV-um ']

X



TEXAS Calculation Example ATLAS

* Assume: 2ndary particle of one 1MeV proton (conservative
energy estimate) passes thru SiO2 in the E-field of a MOM
finger capacitor. How much perturbed charge?

lon pair generation energy: w = 17 |eV]|

Charge of ion pair: ¢,=1.6-10" |C]| :@:941,10—21 (C-eV']
w

Thickness of M1-PO: ¢t = 0.5 [um| = dE~22.02 [keV]|
= A Q—— -dE~0.21 [fC]
w
Compared to thickness of gate oxide of a few nano-meters:

~ [eV]; AQ ~ [aC]



TEXAS ATLAS

Calculation Example

* M1-PO MOM finger cap of dimensions equal to a CDAC unit
cap cell has extracted capacitance of ~20 fF.

* AQ Should yield a 10mV perturbation of capacitor voltage if
detector capacitor initially charged to half-vDD (600mV)

* Slight problem: dielectric between M1-PO is some “mystery
dielectric” with lower €

* But, LET should be on the same order of magnitude...
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TEXAS ATLAS

Detector Readout

* “Electrometer”

¢ (<< Cyy

* Reset sync’ed to sampling clock

* one per detector cap + reference

* TODO: determine BW, noise, and sw. leakage requirement
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TEXAS —— ATLAS

* Finalized for 1p6m 3X1Z1U

* Approx 20 um x 20 um

* Common-centroid, taking into account WPE and LOD
* Noise + (systematic) offset < 400 uV

* Worst-cast ¢ : AV, =400uV —> ¢ ;=300 pS

* Power consumption @ 320 MHz clock: 200 uW (?!?!)
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CDAC ATLAS

EXPERIMENT
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TEXAS CDAC ATLAS

* Approx 50 um x 50 um
* All routing done inter-metal-stack (metals 2-4)
* “Alternating” metal routing to reduce uneven parasitics

* Do not use metal 5 (thick metal and copper x-s is larger
than SiO2)

* Metal 1 reserved for detector structures

* Parasitic extraction: all cap ratios within 1-2 fF of unit cap

* TODO: Replace MOSCAP with M1-PO MOM detector
structure
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[1] http://holbert.faculty.asu.edu/eee460/lonizationRange.pdf
[2] PSTAR database http://physics.nist.gov/cgi-bin/Star/ap_table.pl
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PSTAR Database
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ESTAR Database

Stopping Power (MeV cmjfg}

SILICON DIOXIDE
10°F
LET of electrons in
SiO2 is hopeless for
detection...
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ESTAR Database
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LET of alpha
particles/heavy ions
seem possible for
detection, if it can
make it to M1 layer in
the first place.
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